You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Fox-V3/chatter/chatterbot/utils.py

192 lines
5.2 KiB

"""
ChatterBot utility functions
"""
def import_module(dotted_path):
"""
Imports the specified module based on the
dot notated import path for the module.
"""
import importlib
module_parts = dotted_path.split('.')
module_path = '.'.join(module_parts[:-1])
module = importlib.import_module(module_path)
return getattr(module, module_parts[-1])
def initialize_class(data, **kwargs):
"""
:param data: A string or dictionary containing a import_path attribute.
"""
if isinstance(data, dict):
import_path = data.get('import_path')
data.update(kwargs)
Class = import_module(import_path)
return Class(**data)
else:
Class = import_module(data)
return Class(**kwargs)
def validate_adapter_class(validate_class, adapter_class):
"""
Raises an exception if validate_class is not a
subclass of adapter_class.
:param validate_class: The class to be validated.
:type validate_class: class
:param adapter_class: The class type to check against.
:type adapter_class: class
:raises: Adapter.InvalidAdapterTypeException
"""
from chatter.chatterbot.adapters import Adapter
# If a dictionary was passed in, check if it has an import_path attribute
if isinstance(validate_class, dict):
if 'import_path' not in validate_class:
raise Adapter.InvalidAdapterTypeException(
'The dictionary {} must contain a value for "import_path"'.format(
str(validate_class)
)
)
# Set the class to the import path for the next check
validate_class = validate_class.get('import_path')
if not issubclass(import_module(validate_class), adapter_class):
raise Adapter.InvalidAdapterTypeException(
'{} must be a subclass of {}'.format(
validate_class,
adapter_class.__name__
)
)
def input_function():
"""
Normalizes reading input between python 2 and 3.
The function 'raw_input' becomes 'input' in Python 3.
"""
user_input = input() # NOQA
return user_input
def nltk_download_corpus(resource_path):
"""
Download the specified NLTK corpus file
unless it has already been downloaded.
Returns True if the corpus needed to be downloaded.
"""
from nltk.data import find
from nltk import download
from os.path import split, sep
from zipfile import BadZipfile
# Download the NLTK data only if it is not already downloaded
_, corpus_name = split(resource_path)
# From http://www.nltk.org/api/nltk.html
# When using find() to locate a directory contained in a zipfile,
# the resource name must end with the forward slash character.
# Otherwise, find() will not locate the directory.
#
# Helps when resource_path=='sentiment/vader_lexicon''
if not resource_path.endswith(sep):
resource_path = resource_path + sep
downloaded = False
try:
find(resource_path)
except LookupError:
download(corpus_name)
downloaded = True
except BadZipfile:
raise BadZipfile(
'The NLTK corpus file being opened is not a zipfile, '
'or it has been corrupted and needs to be manually deleted.'
)
return downloaded
def remove_stopwords(tokens, language):
"""
Takes a language (i.e. 'english'), and a set of word tokens.
Returns the tokenized text with any stopwords removed.
Stop words are words like "is, the, a, ..."
Be sure to download the required NLTK corpus before calling this function:
- from chatter.chatterbot.utils import nltk_download_corpus
- nltk_download_corpus('corpora/stopwords')
"""
from nltk.corpus import stopwords
# Get the stopwords for the specified language
stop_words = stopwords.words(language)
# Remove the stop words from the set of word tokens
tokens = set(tokens) - set(stop_words)
return tokens
def get_response_time(chatbot):
"""
Returns the amount of time taken for a given
chat bot to return a response.
:param chatbot: A chat bot instance.
:type chatbot: ChatBot
:returns: The response time in seconds.
:rtype: float
"""
import time
start_time = time.time()
chatbot.get_response('Hello')
return time.time() - start_time
def print_progress_bar(description, iteration_counter, total_items, progress_bar_length=20):
"""
Print progress bar
:param description: Training description
:type description: str
:param iteration_counter: Incremental counter
:type iteration_counter: int
:param total_items: total number items
:type total_items: int
:param progress_bar_length: Progress bar length
:type progress_bar_length: int
:returns: void
:rtype: void
"""
import sys
percent = float(iteration_counter) / total_items
hashes = '#' * int(round(percent * progress_bar_length))
spaces = ' ' * (progress_bar_length - len(hashes))
sys.stdout.write("\r{0}: [{1}] {2}%".format(description, hashes + spaces, int(round(percent * 100))))
sys.stdout.flush()
if total_items == iteration_counter:
print("\r")