from chatterbot import utils from chatterbot.conversation import Statement from chatterbot.trainers import Trainer class TwitterCorpusTrainer(Trainer): pass # def train(self, *args, **kwargs): # """ # Train the chat bot based on the provided list of # statements that represents a single conversation. # """ # import twint # # c = twint.Config() # c.__dict__.update(kwargs) # twint.run.Search(c) # # # previous_statement_text = None # previous_statement_search_text = '' # # statements_to_create = [] # # for conversation_count, text in enumerate(conversation): # if self.show_training_progress: # utils.print_progress_bar( # 'List Trainer', # conversation_count + 1, len(conversation) # ) # # statement_search_text = self.chatbot.storage.tagger.get_text_index_string(text) # # statement = self.get_preprocessed_statement( # Statement( # text=text, # search_text=statement_search_text, # in_response_to=previous_statement_text, # search_in_response_to=previous_statement_search_text, # conversation='training' # ) # ) # # previous_statement_text = statement.text # previous_statement_search_text = statement_search_text # # statements_to_create.append(statement) # # self.chatbot.storage.create_many(statements_to_create)