Merge pull request #175 from bobloy/chatter_develop

Chatter Upgrade
flag_develop
bobloy 4 years ago committed by GitHub
commit ea126db0c5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -59,6 +59,35 @@ Install these on your windows machine before attempting the installation:
[Pandoc - Universal Document Converter](https://pandoc.org/installing.html)
## Methods
### Automatic
This method requires some luck to pull off.
#### Step 1: Add repo and install cog
```
[p]repo add Fox https://github.com/bobloy/Fox-V3
[p]cog install Fox chatter
```
If you get an error at this step, stop and skip to one of the manual methods below.
#### Step 2: Install additional dependencies
Assuming the previous commands had no error, you can now use `pipinstall` to add the remaining dependencies.
NOTE: This method is not the intended use case for `pipinstall` and may stop working in the future.
```
[p]pipinstall --no-deps chatterbot>=1.1
```
#### Step 3: Load the cog and get started
```
[p]load chatter
```
### Windows - Manually
#### Step 1: Built-in Downloader

@ -2,8 +2,10 @@ import asyncio
import logging
import os
import pathlib
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Optional
from functools import partial
from typing import Dict, Optional
import discord
from chatterbot import ChatBot
@ -15,6 +17,8 @@ from redbot.core.commands import Cog
from redbot.core.data_manager import cog_data_path
from redbot.core.utils.predicates import MessagePredicate
from chatter.trainers import MovieTrainer, TwitterCorpusTrainer, UbuntuCorpusTrainer2
log = logging.getLogger("red.fox_v3.chatter")
@ -59,6 +63,7 @@ class Chatter(Cog):
"convo_delta": 15,
"chatchannel": None,
"reply": True,
"learning": True,
}
path: pathlib.Path = cog_data_path(self)
self.data_path = path / "database.sqlite3"
@ -79,6 +84,10 @@ class Chatter(Cog):
self.loop = asyncio.get_event_loop()
self._guild_cache = defaultdict(dict)
self._last_message_per_channel: Dict[Optional[discord.Message]] = defaultdict(lambda: None)
async def red_delete_data_for_user(self, **kwargs):
"""Nothing to delete"""
return
@ -87,7 +96,8 @@ class Chatter(Cog):
return ChatBot(
"ChatterBot",
storage_adapter="chatterbot.storage.SQLStorageAdapter",
# storage_adapter="chatterbot.storage.SQLStorageAdapter",
storage_adapter="chatter.storage_adapters.MyDumbSQLStorageAdapter",
database_uri="sqlite:///" + str(self.data_path),
statement_comparison_function=self.similarity_algo,
response_selection_method=get_random_response,
@ -111,15 +121,7 @@ class Chatter(Cog):
return msg.clean_content
def new_conversation(msg, sent, out_in, delta):
# if sent is None:
# return False
# Don't do "too short" processing here. Sometimes people don't respond.
# if len(out_in) < 2:
# return False
# print(msg.created_at - sent)
# Should always be positive numbers
return msg.created_at - sent >= delta
for channel in ctx.guild.text_channels:
@ -164,6 +166,11 @@ class Chatter(Cog):
return out
def _train_twitter(self, *args, **kwargs):
trainer = TwitterCorpusTrainer(self.chatbot)
trainer.train(*args, **kwargs)
return True
def _train_ubuntu(self):
trainer = UbuntuCorpusTrainer(
self.chatbot, ubuntu_corpus_data_directory=cog_data_path(self) / "ubuntu_data"
@ -171,6 +178,30 @@ class Chatter(Cog):
trainer.train()
return True
async def _train_movies(self):
trainer = MovieTrainer(self.chatbot, cog_data_path(self))
return await trainer.asynctrain()
async def _train_ubuntu2(self, intensity):
train_kwarg = {}
if intensity == 196:
train_kwarg["train_dialogue"] = False
train_kwarg["train_196"] = True
elif intensity == 301:
train_kwarg["train_dialogue"] = False
train_kwarg["train_301"] = True
elif intensity == 497:
train_kwarg["train_dialogue"] = False
train_kwarg["train_196"] = True
train_kwarg["train_301"] = True
elif intensity >= 9000: # NOT 9000!
train_kwarg["train_dialogue"] = True
train_kwarg["train_196"] = True
train_kwarg["train_301"] = True
trainer = UbuntuCorpusTrainer2(self.chatbot, cog_data_path(self))
return await trainer.asynctrain(**train_kwarg)
def _train_english(self):
trainer = ChatterBotCorpusTrainer(self.chatbot)
# try:
@ -196,9 +227,9 @@ class Chatter(Cog):
"""
Base command for this cog. Check help for the commands list.
"""
pass
self._guild_cache[ctx.guild.id] = {} # Clear cache when modifying values
@checks.admin()
@commands.admin()
@chatter.command(name="channel")
async def chatter_channel(
self, ctx: commands.Context, channel: Optional[discord.TextChannel] = None
@ -218,7 +249,7 @@ class Chatter(Cog):
await self.config.guild(ctx.guild).chatchannel.set(channel.id)
await ctx.maybe_send_embed(f"Chat channel is now {channel.mention}")
@checks.admin()
@commands.admin()
@chatter.command(name="reply")
async def chatter_reply(self, ctx: commands.Context, toggle: Optional[bool] = None):
"""
@ -231,19 +262,41 @@ class Chatter(Cog):
await self.config.guild(ctx.guild).reply.set(toggle)
if toggle:
await ctx.send("I will now respond to you if conversation continuity is not present")
await ctx.maybe_send_embed(
"I will now respond to you if conversation continuity is not present"
)
else:
await ctx.send(
await ctx.maybe_send_embed(
"I will not reply to your message if conversation continuity is not present, anymore"
)
@checks.is_owner()
@commands.admin()
@chatter.command(name="learning")
async def chatter_learning(self, ctx: commands.Context, toggle: Optional[bool] = None):
"""
Toggle the bot learning from its conversations.
This is on by default.
"""
learning = await self.config.guild(ctx.guild).learning()
if toggle is None:
toggle = not learning
await self.config.guild(ctx.guild).learning.set(toggle)
if toggle:
await ctx.maybe_send_embed("I will now learn from conversations.")
else:
await ctx.maybe_send_embed("I will no longer learn from conversations.")
@commands.is_owner()
@chatter.command(name="cleardata")
async def chatter_cleardata(self, ctx: commands.Context, confirm: bool = False):
"""
This command will erase all training data and reset your configuration settings
This command will erase all training data and reset your configuration settings.
This applies to all guilds.
Use `[p]chatter cleardata True`
Use `[p]chatter cleardata True` to confirm.
"""
if not confirm:
@ -270,7 +323,7 @@ class Chatter(Cog):
await ctx.tick()
@checks.is_owner()
@commands.is_owner()
@chatter.command(name="algorithm", aliases=["algo"])
async def chatter_algorithm(
self, ctx: commands.Context, algo_number: int, threshold: float = None
@ -304,7 +357,7 @@ class Chatter(Cog):
await ctx.tick()
@checks.is_owner()
@commands.is_owner()
@chatter.command(name="model")
async def chatter_model(self, ctx: commands.Context, model_number: int):
"""
@ -342,7 +395,7 @@ class Chatter(Cog):
f"Model has been switched to {self.tagger_language.ISO_639_1}"
)
@checks.is_owner()
@commands.is_owner()
@chatter.command(name="minutes")
async def minutes(self, ctx: commands.Context, minutes: int):
"""
@ -354,11 +407,11 @@ class Chatter(Cog):
await ctx.send_help()
return
await self.config.guild(ctx.guild).convo_length.set(minutes)
await self.config.guild(ctx.guild).convo_delta.set(minutes)
await ctx.tick()
@checks.is_owner()
@commands.is_owner()
@chatter.command(name="age")
async def age(self, ctx: commands.Context, days: int):
"""
@ -373,7 +426,16 @@ class Chatter(Cog):
await self.config.guild(ctx.guild).days.set(days)
await ctx.tick()
@checks.is_owner()
@commands.is_owner()
@chatter.command(name="kaggle")
async def chatter_kaggle(self, ctx: commands.Context):
"""Register with the kaggle API to download additional datasets for training"""
if not await self.check_for_kaggle():
await ctx.maybe_send_embed(
"[Click here for instructions to setup the kaggle api](https://github.com/Kaggle/kaggle-api#api-credentials)"
)
@commands.is_owner()
@chatter.command(name="backup")
async def backup(self, ctx, backupname):
"""
@ -395,8 +457,71 @@ class Chatter(Cog):
else:
await ctx.maybe_send_embed("Error occurred :(")
@checks.is_owner()
@chatter.command(name="trainubuntu")
@commands.is_owner()
@chatter.group(name="train")
async def chatter_train(self, ctx: commands.Context):
"""Commands for training the bot"""
pass
@chatter_train.group(name="kaggle")
async def chatter_train_kaggle(self, ctx: commands.Context):
"""
Base command for kaggle training sets.
See `[p]chatter kaggle` for details on how to enable this option
"""
pass
@chatter_train_kaggle.command(name="ubuntu")
async def chatter_train_kaggle_ubuntu(
self, ctx: commands.Context, confirmation: bool = False, intensity=0
):
"""
WARNING: Large Download! Trains the bot using *NEW* Ubuntu Dialog Corpus data.
"""
if not confirmation:
await ctx.maybe_send_embed(
"Warning: This command downloads ~800MB and is CPU intensive during training\n"
"If you're sure you want to continue, run `[p]chatter train kaggle ubuntu True`"
)
return
async with ctx.typing():
future = await self._train_ubuntu2(intensity)
if future:
await ctx.maybe_send_embed("Training successful!")
else:
await ctx.maybe_send_embed("Error occurred :(")
@chatter_train_kaggle.command(name="movies")
async def chatter_train_kaggle_movies(self, ctx: commands.Context, confirmation: bool = False):
"""
WARNING: Language! Trains the bot using Cornell University's "Movie Dialog Corpus".
This training set contains dialog from a spread of movies with different MPAA.
This dialog includes racism, sexism, and any number of sensitive topics.
Use at your own risk.
"""
if not confirmation:
await ctx.maybe_send_embed(
"Warning: This command downloads ~29MB and is CPU intensive during training\n"
"If you're sure you want to continue, run `[p]chatter train kaggle movies True`"
)
return
async with ctx.typing():
future = await self._train_movies()
if future:
await ctx.maybe_send_embed("Training successful!")
else:
await ctx.maybe_send_embed("Error occurred :(")
@chatter_train.command(name="ubuntu")
async def chatter_train_ubuntu(self, ctx: commands.Context, confirmation: bool = False):
"""
WARNING: Large Download! Trains the bot using Ubuntu Dialog Corpus data.
@ -404,8 +529,8 @@ class Chatter(Cog):
if not confirmation:
await ctx.maybe_send_embed(
"Warning: This command downloads ~500MB then eats your CPU for training\n"
"If you're sure you want to continue, run `[p]chatter trainubuntu True`"
"Warning: This command downloads ~500MB and is CPU intensive during training\n"
"If you're sure you want to continue, run `[p]chatter train ubuntu True`"
)
return
@ -413,12 +538,11 @@ class Chatter(Cog):
future = await self.loop.run_in_executor(None, self._train_ubuntu)
if future:
await ctx.send("Training successful!")
await ctx.maybe_send_embed("Training successful!")
else:
await ctx.send("Error occurred :(")
await ctx.maybe_send_embed("Error occurred :(")
@checks.is_owner()
@chatter.command(name="trainenglish")
@chatter_train.command(name="english")
async def chatter_train_english(self, ctx: commands.Context):
"""
Trains the bot in english
@ -431,11 +555,26 @@ class Chatter(Cog):
else:
await ctx.maybe_send_embed("Error occurred :(")
@checks.is_owner()
@chatter.command()
async def train(self, ctx: commands.Context, channel: discord.TextChannel):
@chatter_train.command(name="list")
async def chatter_train_list(self, ctx: commands.Context):
"""Trains the bot based on an uploaded list.
Must be a file in the format of a python list: ['prompt', 'response1', 'response2']
"""
Trains the bot based on language in this guild
if not ctx.message.attachments:
await ctx.maybe_send_embed("You must upload a file when using this command")
return
attachment: discord.Attachment = ctx.message.attachments[0]
a_bytes = await attachment.read()
await ctx.send("Not yet implemented")
@chatter_train.command(name="channel")
async def chatter_train_channel(self, ctx: commands.Context, channel: discord.TextChannel):
"""
Trains the bot based on language in this guild.
"""
await ctx.maybe_send_embed(
@ -499,15 +638,18 @@ class Chatter(Cog):
# Thank you Cog-Creators
channel: discord.TextChannel = message.channel
# is_reply = False # this is only useful with in_response_to
if not self._guild_cache[guild.id]:
self._guild_cache[guild.id] = await self.config.guild(guild).all()
is_reply = False # this is only useful with in_response_to
if (
message.reference is not None
and isinstance(message.reference.resolved, discord.Message)
and message.reference.resolved.author.id == self.bot.user.id
):
# is_reply = True # this is only useful with in_response_to
is_reply = True # this is only useful with in_response_to
pass # this is a reply to the bot, good to go
elif guild is not None and channel.id == await self.config.guild(guild).chatchannel():
elif guild is not None and channel.id == self._guild_cache[guild.id]["chatchannel"]:
pass # good to go
else:
when_mentionables = commands.when_mentioned(self.bot, message)
@ -522,15 +664,52 @@ class Chatter(Cog):
text = message.clean_content
async with channel.typing():
future = await self.loop.run_in_executor(None, self.chatbot.get_response, text)
async with ctx.typing():
if is_reply:
in_response_to = message.reference.resolved.content
elif self._last_message_per_channel[ctx.channel.id] is not None:
last_m: discord.Message = self._last_message_per_channel[ctx.channel.id]
minutes = self._guild_cache[ctx.guild.id]["convo_delta"]
if (datetime.utcnow() - last_m.created_at).seconds > minutes * 60:
in_response_to = None
else:
in_response_to = last_m.content
else:
in_response_to = None
# Always use generate reponse
# Chatterbot tries to learn based on the result it comes up with, which is dumb
log.debug("Generating response")
Statement = self.chatbot.storage.get_object("statement")
future = await self.loop.run_in_executor(
None, self.chatbot.generate_response, Statement(text)
)
if in_response_to is not None and self._guild_cache[guild.id]["learning"]:
log.debug("learning response")
await self.loop.run_in_executor(
None,
partial(
self.chatbot.learn_response,
Statement(text),
previous_statement=in_response_to,
),
)
replying = None
if await self.config.guild(guild).reply():
if self._guild_cache[guild.id]["reply"]:
if message != ctx.channel.last_message:
replying = message
if future and str(future):
await channel.send(str(future), reference=replying)
self._last_message_per_channel[ctx.channel.id] = await channel.send(
str(future), reference=replying
)
else:
await channel.send(":thinking:")
await ctx.send(":thinking:")
async def check_for_kaggle(self):
"""Check whether Kaggle is installed and configured properly"""
# TODO: This
return False

@ -17,7 +17,8 @@
"pytz",
"https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz#egg=en_core_web_sm",
"https://github.com/explosion/spacy-models/releases/download/en_core_web_md-2.3.1/en_core_web_md-2.3.1.tar.gz#egg=en_core_web_md",
"spacy>=2.3,<2.4"
"spacy>=2.3,<2.4",
"kaggle"
],
"short": "Local Chatbot run on machine learning",
"end_user_data_statement": "This cog only stores anonymous conversations data; no End User Data is stored.",

@ -0,0 +1,73 @@
from chatterbot.storage import StorageAdapter, SQLStorageAdapter
class MyDumbSQLStorageAdapter(SQLStorageAdapter):
def __init__(self, **kwargs):
super(SQLStorageAdapter, self).__init__(**kwargs)
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
self.database_uri = kwargs.get("database_uri", False)
# None results in a sqlite in-memory database as the default
if self.database_uri is None:
self.database_uri = "sqlite://"
# Create a file database if the database is not a connection string
if not self.database_uri:
self.database_uri = "sqlite:///db.sqlite3"
self.engine = create_engine(
self.database_uri, convert_unicode=True, connect_args={"check_same_thread": False}
)
if self.database_uri.startswith("sqlite://"):
from sqlalchemy.engine import Engine
from sqlalchemy import event
@event.listens_for(Engine, "connect")
def set_sqlite_pragma(dbapi_connection, connection_record):
dbapi_connection.execute("PRAGMA journal_mode=WAL")
dbapi_connection.execute("PRAGMA synchronous=NORMAL")
if not self.engine.dialect.has_table(self.engine, "Statement"):
self.create_database()
self.Session = sessionmaker(bind=self.engine, expire_on_commit=True)
class AsyncSQLStorageAdapter(SQLStorageAdapter):
def __init__(self, **kwargs):
super(SQLStorageAdapter, self).__init__(**kwargs)
self.database_uri = kwargs.get("database_uri", False)
# None results in a sqlite in-memory database as the default
if self.database_uri is None:
self.database_uri = "sqlite://"
# Create a file database if the database is not a connection string
if not self.database_uri:
self.database_uri = "sqlite:///db.sqlite3"
async def initialize(self):
# from sqlalchemy import create_engine
from aiomysql.sa import create_engine
from sqlalchemy.orm import sessionmaker
self.engine = await create_engine(self.database_uri, convert_unicode=True)
if self.database_uri.startswith("sqlite://"):
from sqlalchemy.engine import Engine
from sqlalchemy import event
@event.listens_for(Engine, "connect")
def set_sqlite_pragma(dbapi_connection, connection_record):
dbapi_connection.execute("PRAGMA journal_mode=WAL")
dbapi_connection.execute("PRAGMA synchronous=NORMAL")
if not self.engine.dialect.has_table(self.engine, "Statement"):
self.create_database()
self.Session = sessionmaker(bind=self.engine, expire_on_commit=True)

@ -0,0 +1,351 @@
import asyncio
import csv
import html
import logging
import os
import pathlib
import time
from functools import partial
from chatterbot import utils
from chatterbot.conversation import Statement
from chatterbot.tagging import PosLemmaTagger
from chatterbot.trainers import Trainer
from redbot.core.bot import Red
from dateutil import parser as date_parser
from redbot.core.utils import AsyncIter
log = logging.getLogger("red.fox_v3.chatter.trainers")
class KaggleTrainer(Trainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(chatbot, **kwargs)
self.data_directory = datapath / kwargs.get("downloadpath", "kaggle_download")
self.kaggle_dataset = kwargs.get(
"kaggle_dataset",
"Cornell-University/movie-dialog-corpus",
)
# Create the data directory if it does not already exist
if not os.path.exists(self.data_directory):
os.makedirs(self.data_directory)
def is_downloaded(self, file_path):
"""
Check if the data file is already downloaded.
"""
if os.path.exists(file_path):
self.chatbot.logger.info("File is already downloaded")
return True
return False
async def download(self, dataset):
import kaggle # This triggers the API token check
future = await asyncio.get_event_loop().run_in_executor(
None,
partial(
kaggle.api.dataset_download_files,
dataset=dataset,
path=self.data_directory,
quiet=False,
unzip=True,
),
)
def train(self, *args, **kwargs):
log.error("See asynctrain instead")
def asynctrain(self, *args, **kwargs):
raise self.TrainerInitializationException()
class SouthParkTrainer(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="ubuntu_data_v2",
kaggle_dataset="tovarischsukhov/southparklines",
**kwargs,
)
class MovieTrainer(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="kaggle_movies",
kaggle_dataset="Cornell-University/movie-dialog-corpus",
**kwargs,
)
async def run_movie_training(self):
dialogue_file = "movie_lines.tsv"
conversation_file = "movie_conversations.tsv"
log.info(f"Beginning dialogue training on {dialogue_file}")
start_time = time.time()
tagger = PosLemmaTagger(language=self.chatbot.storage.tagger.language)
# [lineID, characterID, movieID, character name, text of utterance]
# File parsing from https://www.kaggle.com/mushaya/conversation-chatbot
with open(self.data_directory / conversation_file, "r", encoding="utf-8-sig") as conv_tsv:
conv_lines = conv_tsv.readlines()
with open(self.data_directory / dialogue_file, "r", encoding="utf-8-sig") as lines_tsv:
dialog_lines = lines_tsv.readlines()
# trans_dict = str.maketrans({"<u>": "__", "</u>": "__", '""': '"'})
lines_dict = {}
for line in dialog_lines:
_line = line[:-1].strip('"').split("\t")
if len(_line) >= 5: # Only good lines
lines_dict[_line[0]] = (
html.unescape(("".join(_line[4:])).strip())
.replace("<u>", "__")
.replace("</u>", "__")
.replace('""', '"')
)
else:
log.debug(f"Bad line {_line}")
# collecting line ids for each conversation
conv = []
for line in conv_lines[:-1]:
_line = line[:-1].split("\t")[-1][1:-1].replace("'", "").replace(" ", ",")
conv.append(_line.split(","))
# conversations = csv.reader(conv_tsv, delimiter="\t")
#
# reader = csv.reader(lines_tsv, delimiter="\t")
#
#
#
# lines_dict = {}
# for row in reader:
# try:
# lines_dict[row[0].strip('"')] = row[4]
# except:
# log.exception(f"Bad line: {row}")
# pass
# else:
# # log.info(f"Good line: {row}")
# pass
#
# # lines_dict = {row[0].strip('"'): row[4] for row in reader_list}
statements_from_file = []
save_every = 300
count = 0
# [characterID of first, characterID of second, movieID, list of utterances]
async for lines in AsyncIter(conv):
previous_statement_text = None
previous_statement_search_text = ""
for line in lines:
text = lines_dict[line]
statement = Statement(
text=text,
in_response_to=previous_statement_text,
conversation="training",
)
for preprocessor in self.chatbot.preprocessors:
statement = preprocessor(statement)
statement.search_text = tagger.get_text_index_string(statement.text)
statement.search_in_response_to = previous_statement_search_text
previous_statement_text = statement.text
previous_statement_search_text = statement.search_text
statements_from_file.append(statement)
count += 1
if count >= save_every:
if statements_from_file:
self.chatbot.storage.create_many(statements_from_file)
statements_from_file = []
count = 0
if statements_from_file:
self.chatbot.storage.create_many(statements_from_file)
log.info(f"Training took {time.time() - start_time} seconds.")
async def asynctrain(self, *args, **kwargs):
extracted_lines = self.data_directory / "movie_lines.tsv"
extracted_lines: pathlib.Path
# Download and extract the Ubuntu dialog corpus if needed
if not extracted_lines.exists():
await self.download(self.kaggle_dataset)
else:
log.info("Movie dialog already downloaded")
if not extracted_lines.exists():
raise FileNotFoundError(f"{extracted_lines}")
await self.run_movie_training()
return True
# train_dialogue = kwargs.get("train_dialogue", True)
# train_196_dialogue = kwargs.get("train_196", False)
# train_301_dialogue = kwargs.get("train_301", False)
#
# if train_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText.csv")
#
# if train_196_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText_196.csv")
#
# if train_301_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText_301.csv")
class UbuntuCorpusTrainer2(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="kaggle_ubuntu",
kaggle_dataset="rtatman/ubuntu-dialogue-corpus",
**kwargs,
)
async def asynctrain(self, *args, **kwargs):
extracted_dir = self.data_directory / "Ubuntu-dialogue-corpus"
# Download and extract the Ubuntu dialog corpus if needed
if not extracted_dir.exists():
await self.download(self.kaggle_dataset)
else:
log.info("Ubuntu dialogue already downloaded")
if not extracted_dir.exists():
raise FileNotFoundError("Did not extract in the expected way")
train_dialogue = kwargs.get("train_dialogue", True)
train_196_dialogue = kwargs.get("train_196", False)
train_301_dialogue = kwargs.get("train_301", False)
if train_dialogue:
await self.run_dialogue_training(extracted_dir, "dialogueText.csv")
if train_196_dialogue:
await self.run_dialogue_training(extracted_dir, "dialogueText_196.csv")
if train_301_dialogue:
await self.run_dialogue_training(extracted_dir, "dialogueText_301.csv")
return True
async def run_dialogue_training(self, extracted_dir, dialogue_file):
log.info(f"Beginning dialogue training on {dialogue_file}")
start_time = time.time()
tagger = PosLemmaTagger(language=self.chatbot.storage.tagger.language)
with open(extracted_dir / dialogue_file, "r", encoding="utf-8") as dg:
reader = csv.DictReader(dg)
next(reader) # Skip the header
last_dialogue_id = None
previous_statement_text = None
previous_statement_search_text = ""
statements_from_file = []
save_every = 50
count = 0
async for row in AsyncIter(reader):
dialogue_id = row["dialogueID"]
if dialogue_id != last_dialogue_id:
previous_statement_text = None
previous_statement_search_text = ""
last_dialogue_id = dialogue_id
count += 1
if count >= save_every:
if statements_from_file:
self.chatbot.storage.create_many(statements_from_file)
statements_from_file = []
count = 0
if len(row) > 0:
statement = Statement(
text=row["text"],
in_response_to=previous_statement_text,
conversation="training",
# created_at=date_parser.parse(row["date"]),
persona=row["from"],
)
for preprocessor in self.chatbot.preprocessors:
statement = preprocessor(statement)
statement.search_text = tagger.get_text_index_string(statement.text)
statement.search_in_response_to = previous_statement_search_text
previous_statement_text = statement.text
previous_statement_search_text = statement.search_text
statements_from_file.append(statement)
if statements_from_file:
self.chatbot.storage.create_many(statements_from_file)
log.info(f"Training took {time.time() - start_time} seconds.")
class TwitterCorpusTrainer(Trainer):
pass
# def train(self, *args, **kwargs):
# """
# Train the chat bot based on the provided list of
# statements that represents a single conversation.
# """
# import twint
#
# c = twint.Config()
# c.__dict__.update(kwargs)
# twint.run.Search(c)
#
#
# previous_statement_text = None
# previous_statement_search_text = ''
#
# statements_to_create = []
#
# for conversation_count, text in enumerate(conversation):
# if self.show_training_progress:
# utils.print_progress_bar(
# 'List Trainer',
# conversation_count + 1, len(conversation)
# )
#
# statement_search_text = self.chatbot.storage.tagger.get_text_index_string(text)
#
# statement = self.get_preprocessed_statement(
# Statement(
# text=text,
# search_text=statement_search_text,
# in_response_to=previous_statement_text,
# search_in_response_to=previous_statement_search_text,
# conversation='training'
# )
# )
#
# previous_statement_text = statement.text
# previous_statement_search_text = statement_search_text
#
# statements_to_create.append(statement)
#
# self.chatbot.storage.create_many(statements_to_create)
Loading…
Cancel
Save