Add new kaggle trainers

pull/175/head
bobloy 4 years ago
parent 04ccb435f8
commit 8feb21e34b

@ -1,5 +1,6 @@
import asyncio
import csv
import html
import logging
import os
import pathlib
@ -56,13 +57,159 @@ class KaggleTrainer(Trainer):
),
)
def train(self, *args, **kwargs):
log.error("See asynctrain instead")
class UbuntuCorpusTrainer2(KaggleTrainer):
def asynctrain(self, *args, **kwargs):
raise self.TrainerInitializationException()
class SouthParkTrainer(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="ubuntu_data_v2",
kaggle_dataset="tovarischsukhov/southparklines",
**kwargs,
)
class MovieTrainer(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="kaggle_movies",
kaggle_dataset="Cornell-University/movie-dialog-corpus",
**kwargs,
)
async def run_movie_training(self):
dialogue_file = "movie_lines.tsv"
conversation_file = "movie_conversations.tsv"
log.info(f"Beginning dialogue training on {dialogue_file}")
start_time = time.time()
tagger = PosLemmaTagger(language=self.chatbot.storage.tagger.language)
# [lineID, characterID, movieID, character name, text of utterance]
# File parsing from https://www.kaggle.com/mushaya/conversation-chatbot
with open(self.data_directory / conversation_file, "r", encoding="utf-8-sig") as conv_tsv:
conv_lines = conv_tsv.readlines()
with open(self.data_directory / dialogue_file, "r", encoding="utf-8-sig") as lines_tsv:
dialog_lines = lines_tsv.readlines()
# trans_dict = str.maketrans({"<u>": "__", "</u>": "__", '""': '"'})
lines_dict = {}
for line in dialog_lines:
_line = line[:-1].strip('"').split("\t")
if len(_line) >= 5: # Only good lines
lines_dict[_line[0]] = (
html.unescape(("".join(_line[4:])).strip())
.replace("<u>", "__")
.replace("</u>", "__")
.replace('""', '"')
)
else:
log.debug(f"Bad line {_line}")
# collecting line ids for each conversation
conv = []
for line in conv_lines[:-1]:
_line = line[:-1].split("\t")[-1][1:-1].replace("'", "").replace(" ", ",")
conv.append(_line.split(","))
# conversations = csv.reader(conv_tsv, delimiter="\t")
#
# reader = csv.reader(lines_tsv, delimiter="\t")
#
#
#
# lines_dict = {}
# for row in reader:
# try:
# lines_dict[row[0].strip('"')] = row[4]
# except:
# log.exception(f"Bad line: {row}")
# pass
# else:
# # print(f"Good line: {row}")
# pass
#
# # lines_dict = {row[0].strip('"'): row[4] for row in reader_list}
statements_from_file = []
# [characterID of first, characterID of second, movieID, list of utterances]
async for lines in AsyncIter(conv):
previous_statement_text = None
previous_statement_search_text = ""
for line in lines:
text = lines_dict[line]
statement = Statement(
text=text,
in_response_to=previous_statement_text,
conversation="training",
)
for preprocessor in self.chatbot.preprocessors:
statement = preprocessor(statement)
statement.search_text = tagger.get_text_index_string(statement.text)
statement.search_in_response_to = previous_statement_search_text
previous_statement_text = statement.text
previous_statement_search_text = statement.search_text
statements_from_file.append(statement)
if statements_from_file:
print(statements_from_file)
self.chatbot.storage.create_many(statements_from_file)
statements_from_file = []
print("Training took", time.time() - start_time, "seconds.")
async def asynctrain(self, *args, **kwargs):
extracted_lines = self.data_directory / "movie_lines.tsv"
extracted_lines: pathlib.Path
# Download and extract the Ubuntu dialog corpus if needed
if not extracted_lines.exists():
await self.download(self.kaggle_dataset)
else:
log.info("Movie dialog already downloaded")
if not extracted_lines.exists():
raise FileNotFoundError(f"{extracted_lines}")
await self.run_movie_training()
return True
# train_dialogue = kwargs.get("train_dialogue", True)
# train_196_dialogue = kwargs.get("train_196", False)
# train_301_dialogue = kwargs.get("train_301", False)
#
# if train_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText.csv")
#
# if train_196_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText_196.csv")
#
# if train_301_dialogue:
# await self.run_dialogue_training(extracted_dir, "dialogueText_301.csv")
class UbuntuCorpusTrainer2(KaggleTrainer):
def __init__(self, chatbot, datapath: pathlib.Path, **kwargs):
super().__init__(
chatbot,
datapath,
downloadpath="kaggle_ubuntu",
kaggle_dataset="rtatman/ubuntu-dialogue-corpus",
**kwargs,
)
@ -91,6 +238,8 @@ class UbuntuCorpusTrainer2(KaggleTrainer):
if train_301_dialogue:
await self.run_dialogue_training(extracted_dir, "dialogueText_301.csv")
return True
async def run_dialogue_training(self, extracted_dir, dialogue_file):
log.info(f"Beginning dialogue training on {dialogue_file}")
start_time = time.time()
@ -120,6 +269,7 @@ class UbuntuCorpusTrainer2(KaggleTrainer):
if count >= save_every:
if statements_from_file:
self.chatbot.storage.create_many(statements_from_file)
statements_from_file = []
count = 0
if len(row) > 0:
@ -147,9 +297,6 @@ class UbuntuCorpusTrainer2(KaggleTrainer):
print("Training took", time.time() - start_time, "seconds.")
def train(self, *args, **kwargs):
log.error("See asynctrain instead")
class TwitterCorpusTrainer(Trainer):
pass

Loading…
Cancel
Save