diff --git a/chatter/info.json b/chatter/info.json index b79e587..df77ee8 100644 --- a/chatter/info.json +++ b/chatter/info.json @@ -17,7 +17,8 @@ "pytz", "https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz#egg=en_core_web_sm", "https://github.com/explosion/spacy-models/releases/download/en_core_web_md-2.3.1/en_core_web_md-2.3.1.tar.gz#egg=en_core_web_md", - "spacy>=2.3,<2.4" + "spacy>=2.3,<2.4", + "--no-deps \"chatterbot>=1.1\"" ], "short": "Local Chatbot run on machine learning", "end_user_data_statement": "This cog only stores anonymous conversations data; no End User Data is stored.", diff --git a/chatter/trainers.py b/chatter/trainers.py index e6eedba..42d6288 100644 --- a/chatter/trainers.py +++ b/chatter/trainers.py @@ -4,45 +4,46 @@ from chatterbot.trainers import Trainer class TwitterCorpusTrainer(Trainer): - def train(self, *args, **kwargs): - """ - Train the chat bot based on the provided list of - statements that represents a single conversation. - """ - import twint - - c = twint.Config() - c.__dict__.update(kwargs) - twint.run.Search(c) - - - previous_statement_text = None - previous_statement_search_text = '' - - statements_to_create = [] - - for conversation_count, text in enumerate(conversation): - if self.show_training_progress: - utils.print_progress_bar( - 'List Trainer', - conversation_count + 1, len(conversation) - ) - - statement_search_text = self.chatbot.storage.tagger.get_text_index_string(text) - - statement = self.get_preprocessed_statement( - Statement( - text=text, - search_text=statement_search_text, - in_response_to=previous_statement_text, - search_in_response_to=previous_statement_search_text, - conversation='training' - ) - ) - - previous_statement_text = statement.text - previous_statement_search_text = statement_search_text - - statements_to_create.append(statement) - - self.chatbot.storage.create_many(statements_to_create) \ No newline at end of file + pass + # def train(self, *args, **kwargs): + # """ + # Train the chat bot based on the provided list of + # statements that represents a single conversation. + # """ + # import twint + # + # c = twint.Config() + # c.__dict__.update(kwargs) + # twint.run.Search(c) + # + # + # previous_statement_text = None + # previous_statement_search_text = '' + # + # statements_to_create = [] + # + # for conversation_count, text in enumerate(conversation): + # if self.show_training_progress: + # utils.print_progress_bar( + # 'List Trainer', + # conversation_count + 1, len(conversation) + # ) + # + # statement_search_text = self.chatbot.storage.tagger.get_text_index_string(text) + # + # statement = self.get_preprocessed_statement( + # Statement( + # text=text, + # search_text=statement_search_text, + # in_response_to=previous_statement_text, + # search_in_response_to=previous_statement_search_text, + # conversation='training' + # ) + # ) + # + # previous_statement_text = statement.text + # previous_statement_search_text = statement_search_text + # + # statements_to_create.append(statement) + # + # self.chatbot.storage.create_many(statements_to_create) \ No newline at end of file